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Linear stability analysis of channel inception:
downstream-driven theory
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A linear stability analysis of incipient channellization on hillslopes is performed using
the shallow-water equations and a description of the erosion of a cohesive bed. The
base state consists of a laterally uniform Froude-subcritical sheet flow down a smooth,
downward-concave hillslope profile. The downstream boundary condition consists of
the imposition of a Froude number of unity. The process of channellization is thus
driven from the downstream end. The flow and bed profiles describe a base state
that migrates at constant, slow speed in the upstream direction due to bed erosion.
Transverse perturbations corresponding to a succession of parallel incipient channels
are introduced. It is found that these perturbations grow in time, so describing incipient
channellization, only when the characteristic spacing between incipient channels is on
the order of 6–100 times the Froude-critical depth divided by the resistance coefficient.
The characteristic wavelength associated with maximum perturbation growth rate
is found to scale as 10 times the Froude-critical depth divided by the resistance
coefficient. Evaluating the friction coefficient as on the order of 0.01, an estimate
of incipient channel spacing on the order of 1000 times the Froude-critical depth is
obtained. The analysis reveals that downstream-driven channellization becomes more
difficult as (a) the critical shear stress required to erode the bed becomes so large that
it approaches the Froude-critical shear stress reached at the downstream boundary
and (b) the Froude number of the subcritical equilibrium flow attained far upstream
approaches unity. Alternative mechanisms must be invoked to explain channellization
on slopes high enough to maintain Froude-supercritical sheet flow.

1. Introduction
An erodible slope subjected to rainfall tends to become dissected by channels which

in the initial stages of development are often roughly parallel and uniformly spaced
in the transverse direction. This process of incipient channellization can be commonly
observed in nature at a variety of scales, from the small rills that form on freshly
formed slopes adjacent to roads (e.g. Sawai 1977) to larger natural channels that
form on hillslopes (e.g. Montgomery & Dietrich 1989; Reid 1989). An illustration of
naturally evolved channel spacing is given in figure 1.

Significant progress on the evolution of channelized drainage basins has been made
since the early research due to Smith & Bretherton (1972) and Luke (1974). In
particular, Willgoose, Bras & Rodriguez-Iturbe (1991a, b) offered the first numerical
model capable of reproducing the evolution of complete channelized drainage basins
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Figure 1. Illustration of channellization with a characteristic transverse spacing between channels.
The lake is Mangoku Lagoon near Sendai, Japan.

from slopes that are initially flat except for randomized perturbations. Significant
further progress has been made by Howard (1994) and Tucker & Slingerland (1997).
A summary of developments in the modelling of channellization and drainage basin
formation can be found in Rodriguez-Iturbe & Rinaldo (1997).

A characteristic feature of the above models is that they rely on a cellular dis-
cretization of the problem. Within this discretization the equations of flow momentum
balance are approximated simply by the formulation for steady, uniform flow, i.e. nor-
mal flow, applied down the steepest path of descent. These cellular models are of
considerable value because (a) they evolve complex topography from a relatively
small number of physically based rules and (b) they allow studies of varied hydro-
logic regime, tectonic environment etc. They are not, however, capable of answering
all questions that might be asked about channellization.

In particular, cellular models rely on the addition of random perturbations to an
initially flat, tilted surface in order to start the process of channellization. The pattern
of initial channellization is a function of the randomization. That is, the models do
not appear to encompass an inherent instability that causes flat, tilted surfaces subject
to sheet flow to begin channellization in a characteristic way. The goal of the present
paper is a rigorous description of such an instability.



Linear stability analysis of channel inception 241

Two basic scenarios have been considered for the process of incipient channel-
lization. The first of these is an ‘upstream-driven’ scenario which relies on direct
erosion of the hillslope itself. Sheet flow on a slope cannot be expected to be perfectly
uniform. Instead, interaction between the tendency for the flow to concentrate and
the tendency for the bed to erode in such zones of concentration might be expected
to give rise to a characteristic spacing between incipient channels. The first attempt at
a linear stability analysis of channellization, that due to Smith & Bretherton (1972),
was of this type. Their groundbreaking work has served to motivate much of the
more recent research on drainage basin evolution. Their formulation of the flow,
however, consisted simply of the assumption of steady, uniform (i.e. normal) open
channel flow. This proved too simple to characterize the problem, and as a result
the predicted characteristic spacing between channels proved to be infinitely small.
Loewenherz (1991) was evidently aware of this shortcoming of the model of Smith
& Bretherton. Her model, however, relied on the introduction of artificial terms into
the equations of motion in order to obtain a finite characteristic spacing.

Izumi & Parker (1995a) approached this scenario using the full shallow-water
equations of open channel flow. In their linear analysis the flow is allowed to gather
in parallel downslope-directed infinitesimal troughs of arbitrary transverse spacing.
Overall flow increases in the downstream direction due to rainfall. Near the top of the
ridge, the flow is assumed to be too weak to erode the bed, but as discharge increases
downslope a point is reached after which erosion can occur. The model predicts the
transverse spacing between channels as being the one which causes erosion at the
farthest upstream point in the troughs. This spacing scales with the depth of the sheet
flow divided by the slope of the surface. The analysis successfully overcomes the
limitations of steady, uniform flow in predicting incipient channel spacing. Because
it quantifies the process in terms of the inception rather than the rate of erosion,
however, the analysis cannot be classified as a formal stability analysis.

The second scenario for the process of incipient channellization is ‘downstream-
driven’, according to which the process is partly controlled at a point at the down-
stream end of the hillslope. For example, in the case for which the hillslope terminates
in a free overfall, the sheet flow must form a backwater curve as it accelerates to-
ward the precipice. As a result intense erosion might be expected just upstream of the
precipice. Again, it can be expected that this erosion would not be completely uniform
in the transverse direction; instead, interaction between flow concentration and bed
erosion should give rise to a characteristic spacing between incipient channels. The
authors are aware of only one paper treating this scenario, that of Izumi & Parker
(1995b). The analysis, which employs same type of perturbation as that of Izumi &
Parker (1995a), again relies upon considerations of incipient erosion, and does not
describe erosion itself. Although it yields an incipient spacing between channels that
scales with sheet flow depth divided by slope, it is not a formal stability analysis. In
addition, it must rely on a description of incipient erosion upstream of the precipice,
where the analysis becomes singular.

In the present paper these shortcomings of the downstream-driven scenario are
overcome through the use of a formal linear stability analysis of an erodible bed.
In this way the model not only encompasses the tendency of the flow to gather
in low areas, but also describes the time process of channel erosion as it interacts
with the flow. It provides a rigorous and physically sound basis for determining
the transverse spacing between channels. It should be noted, however, that a linear
stability analysis can predict channel spacing only at the inception of channellization.
Nonlinear effects can be expected to change the spacing, most likely in the direction of
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Figure 2. Definition diagram for flow over a vertical precipice.

longer wavelength as the upstream flow to weaker channels is arrogated by stronger
channels.

2. The conceptual model
The conceptual model of Izumi & Parker (1995b) is reviewed first. Consider an

erodible surface with a constant slope S in the x̃ (downslope) direction and vanishing
slope in the ỹ (transverse) direction, as described in figure 2. In this paper the
tildes denote terms with dimensions. The surface is subjected to a rainfall, which
induces a sheet flow the intensity of which increases in the downslope direction. The
downslope increase in flow intensity must be specifically included in any upstream-
driven model of channellization, e.g. Izumi & Parker (1995a). In the case of the
present downstream-driven model, however, the length of influence of the precipice
on the flow extends upstream a distance that scales with flow depth divided by slope.
As shown in Izumi & Parker (1995b), as long as this distance is short compared
to the length of the slope from precipice to ridge crest the effect of rainfall can be
ignored in the vicinity of the precipice. With this in mind, it is assumed that before
the development of channellization the water discharge per unit width q is constant
in both the streamwise and transverse directions.

The slope S is taken to be sufficiently low to ensure that the flow upstream of the
precipice is always in the subcritical Froude regime. (The upstream-driven analysis
of Izumi & Parker 1995a is appropriate for supercritical overland flow.) Such a flow
must accelerate toward a Froude number of unity at the precipice of the overfall. If
in the process of doing so the boundary shear stress somewhere exceeds the threshold
value for erosion, the region from the precipice upstream to the beginning of erosion
must begin to deform. This deformation can be expected to gradually propagate
upslope. In the absence of any lateral perturbations this upslope translation should
be uniform in the transverse direction. Local low zones along the precipice can,
however, be expected to gather more flow, resulting in higher erosion rates and the
inception of channellization.

The conceptual basis for the present downstream-driven model is similar to that of
Izumi & Parker (1995b), but different in an important way. As can be seen in figure
1, it is common to find that the ridges between channels form a downward-concave
profile, such that slope increases in the downslope direction. As erosion is likely to
be least on the ridges, they provide an idea as to what the slope might be like in the
absence of channellization. The base state before the introduction of perturbations in
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Froude-critical point

ỹ

x̃

Figure 3. Definition diagram for flow over a downward-concave slope, with subcritical flow for
x̃ < 0 (the domain of interest in the present analysis).

the transverse direction is here taken to be a downward concave profile of the type
of figure 3.

Herein this downward-concave base profile is not chosen arbitrarily. Instead, it
is taken to be a self-preserving form that propagates in the upslope direction at
constant speed in response to erosion. It establishes the starting point for a true
stability analysis of incipient downstream-driven channellization.

This base state is introduced in Parker & Izumi (2000), where it is termed a solitary
step. Here the analysis is extended considerably. While a rigorous analysis follows
below, it is useful to describe in advance several characteristics of the profile. The
profile links the flow pattern with the profile of bed elevation. Far upstream the
profile attains a constant bed slope Sn associated with normal Froude-subcritical flow
at constant velocity. The analysis also applies to the limiting case of vanishing Sn,
in which case the streamwise velocity profile converges to the spatially varying form
over a horizontal bed far upstream. Both bed slope and streamwise flow velocity
increase monotonically downstream to a point where the Froude number attains
unity, as shown in figure 3. This point of Froude-critical flow defines the downstream
boundary condition for the present downstream-driven theory.

The analysis of the base state presented here represents a considerable generalization
over that presented in Parker & Izumi (2000). Three limiting cases are possible far
upstream: one for which the bed is eroding, one for which the bed is at the threshold
conditions for erosion and one for which the bed is not eroding. In the last of
these three, the zone of eroding bed extends only a finite distance upstream of the
Froude-critical point. The stability analysis for incipient channellization presented
here applies to all three cases.

In order to perform a linear stability analysis transverse perturbations are intro-
duced into the base state. A sinusoidal perturbation with wavenumber k̃ is given
at the precipice of the downstream end of the slope, as shown in figure 4. In the
case of subcritical overland flow, the local troughs should attract the flow, causing a
gathering of streamlines. The protuberances should exert a comensurate repulsion of
the flow. This causes amplification of the boundary shear stress in the troughs, which
in turn amplifies the rate of bed erosion in them. The resulting incision characterizes
the mode of channellization envisioned here. The incipient channels grow through
the self-reinforcing interaction of the focusing of flow down troughs and incision.
The characteristic wavelength λ̃m(= 2π/k̃m) at which the growth rate is maximized is
expected to be the dominant spacing of the incipient channels. In the case where the
bed of the base state is eroding only a finite distance upstream of the Froude-critical
point, the bed perturbations extend only the same finite distance upstream. This
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Figure 4. Conceptual diagram showing the introduction of transverse perturbations representing
incipient channellization into the slope profile of figure 3.

does not mean that channellization cannot propagate farther up the slope, but rather
relegates the study of this phenomenon to a fully nonlinear finite-amplitude analysis.

3. Analytical formulation
3.1. Governing equations

The present analysis is devoted to a description of the non-steady process by which
an erosional surface evolves in response to sheet flow. A changing surface implies a
changing flow. This notwithstanding, if the time scale associated with surface evolution
in response to erosion is long compared to that associated with the response of the
flow to the changing surface, the classical quasi-steady approximation can be invoked.
This approximation, according to which the unsteady terms in the equations of motion
of the flow can be neglected, is adopted here. The shallow-water equations associated
with two-dimensional sheet flow thus take the following form:

ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
= −g ∂h̃

∂x̃
− g ∂η̃

∂x̃
− τ̃x

ρh̃
, (3.1)

ũ
∂ṽ

∂x̃
+ ṽ

∂ṽ

∂ỹ
= −g ∂h̃

∂ỹ
− g∂η̃

∂ỹ
− τ̃y

ρh̃
, (3.2)

∂ũh̃

∂x̃
+
∂ṽh̃

∂ỹ
= 0. (3.3)

In the above relations (x̃, ỹ) are the streamwise and lateral coordinates in the horizontal
plane shown in figure 3; (ũ, ṽ) and (τ̃x, τ̃y) denote the depth-averaged flow velocity

and boundary shear stress in the (x̃, ỹ) direction, h̃ denotes flow depth, η̃ denotes bed
elevation, ρ denotes the density of water and g denotes gravitational acceleration.
The above form of the equations of motion is valid as long as the bed slope is not
too steep and the flow is not changing too rapidly in the streamwise direction.

The description of sediment continuity appropriate for the analysis of channel
processes can be broadly divided into two classes, i.e. transportational and erosional
formulations (Izumi & Parker 1995b). In the former description the erodible bed
surface is taken to be non-cohesive and erosion and deposition of sediment are
assumed to occur simultaneously, giving rise to a vector of volume bedload transport
per unit width qB which is always directed tangential to the surface. The associated
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Exner equation of sediment continuity is

∂η̃

∂t̃
= − 1

1− λp ∇̃ · qB, (3.4a)

where t̃ denotes time, λp denotes the porosity of the sediment composing the bed

surface and ∇̃ denotes the dimensioned form of the standard nabla operator. This
formulation, which is the basis for the analysis of e.g. Smith & Bretherton (1972),
Luke (1974) and Willgoose et al. (1989), is appropriate for the case when the channels
have evolved to the point that their beds are covered by a layer of non-cohesive
sediment. This ‘transportational’ formulation, however, results in a description of
flow over an erodible bed that has a strongly diffusional component. For this reason
it cannot describe the downward-concave base profile observed in the field (the ridges
of figure 1) and schematized in figure 2.

An alternative formulation would appear to be more appropriate for a study
of channel inception. As is demonstrated in the next section, a purely erosional
formulation can be used to describe a downward concave profile that can in turn
be used as the base state for a stability analysis of incipient channellization. In this
formulation, the regolith that composes the erodible sediment layer below the surface
is assumed to be cohesive. Once detached, however, the sediment is assumed to be
carried far downstream by the flow (and in particular well downstream of the Froude-
critical point of figure 3) before depositing, resulting in long reaches which are purely
erosional. These conditions should hold when the erosion rate is sufficiently small,
and when storm-driven flows have a capacity to transport sediment on hillslopes that
far exceeds the delivery through erosion. In the present treatment this purely erosional
formulation is considered. The Exner equation of conservation of bed sediment takes
the form

∂η̃

∂t̃
= −Ẽ(τ̃), (3.4b)

where Ẽ denotes the velocity of erosion of the bed due to the flow of water. In most
formulations to date this parameter is taken to be a power function of the magnitude
τ̃ of the boundary shear stress vector, such that

Ẽ(τ̃) =

{
α((τ̃/τ̃th)− 1)γ if τ̃ > τ̃th
0 if τ̃ < τ̃th,

(3.5a)

τ̃ = (τ̃2
x + τ̃2

y)
1/2, (3.5b)

where τ̃th denotes the critical or threshold value of τ̃ for the onset of bed erosion (not
to be confused with the Froude-critical condition), γ denotes a dimensionless exponent
and α is a parameter with the dimensions of velocity (Ariathurai & Arulanandan
1978; Sheng & Lick 1978; Parker & Izumi 2000). Both these parameters are functions
of soil type and conditions. Empirical determinations of γ generally place it in the
range 0.5–4. It will be shown in the present analysis that physically realistic solutions
cannot be realized for γ < 1, implying that channellization cannot occur by the
present mechanism if the erosion rate depends too weakly on the magnitude of the
boundary shear stress vector.

Here the boundary shear stress is related to flow velocity by means of a friction
coefficient Cf:

(τ̃x, τ̃y) = τ̃
(ũ, ṽ)

(ũ2 + ṽ2)1/2
, τ̃ = ρCf(ũ

2 + ṽ2). (3.6a, b)
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In general Cf is a weak function of flow depth and roughness height, but in the
present theory it is taken to be a given constant for simplicity.

The domain of solution is (−∞, x̃c) where x̃c denotes the point at which Froude-
critical conditions are reached. Appropriate upstream and downstream conditions
can be set as follows. Far upstream the flow should attain steady, uniform normal
conditions, and the bed slope should approach a constant slope Sn. The downstream-
driven channellization described herein will be shown to decay to zero far upstream,
so that the following conditions are satisfied:

(ũ, ṽ)→ (ũn, 0), −∂η̃
∂x̃
→ Sn as x̃→ −∞, (3.7a, b)

where ũn is obtained from the steady, uniform approximation obtained from (3.1) and
(3.3) with the aid of (3.6):

Cfũ
2
n = gh̃nSn, ũnh̃n = q. (3.7c, d )

As will be seen from the solution for the base flow, (3.7a, b) are not formally boundary
conditions; if the problem is set up correctly they will be found to be automatically
satisfied.

The profiles of figures 3 and 4 will be shown to become monotonically steeper in
the downslope (x̃) direction, ensuring that Froude-critical conditions are reached at
some point x̃c, where the bed elevation η̃ is taken to vanish for simplicity. Thus where
the Froude number Fr is denoted as

Fr =

(
ũ2 + ṽ2

gh̃

)1/2

, (3.8a)

it follows that

Fr = 1, η̃ = 0 at x̃ = x̃c. (3.8b, c)

In the solution for the base state it will be found that the point x̃c migrates upstream
at constant speed. The above equations constitute formal boundary conditions for the
problem.

It is useful to introduce three dimensionless parameters at this point. Equation
(3.7c) can be expressed in the form

Fr2
n = σ, (3.9a)

where Frn denotes the Froude number associated with normal flow far upstream and
σ denotes a normalized slope far upstream, such that

Frn =
ũn

(gh̃n)1/2
, σ =

Sn

Cf
. (3.9b, c)

The shear stress τ̃n realized at the normal flow far upstream is given by

τ̃n = ρCfũ
2
n. (3.10a)

The ratio of the critical shear stress for bed erosion to the normal bed shear stress is
here defined to be ψn, where

ψn =
τ̃th

τ̃n
. (3.10b)

The range of validity of the present analysis is thus

0 < Frn < 1. (3.11)
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The case ψn < 1 corresponds to one for which erosion extends infinitely far upstream
in the base state; when ψn > 1 erosion extends only a finite distance upstream.

3.2. Non-dimensionalization

The governing equations are rendered dimensionless using scales associated with
the one-dimensional (laterally uniform) base flow over the configuration of figure
3. This base flow is characterized by a constant water discharge per unit width q.
The following transformations are introduced in order to remove dimensions from
the problem; the parameters without tildes are the dimensionless versions of the
corresponding parameters with tildes:

(ũ, ṽ) = Uc(u, v), (x̃, ỹ) =
Dc

Cf
(x, y), (h̃, η̃) = Dc(h, η), (3.12a–c)

k̃ =

(
Dc

Cf

)−1

k, t̃ = Dc

[
α

(
τ̃c

τ̃th

)γ]−1

t, τ̃c = ρCfU
2
c . (3.12d–f )

In the above relations Uc and Dc denote the flow velocity and depth of the base flow
corresponding to Froude-critical flow conditions, i.e. for which

Fr =
ũ

(gh̃)1/2
= 1. (3.13a)

It is easily shown from the above relation and the condition of flow continuity that
Uc and Dc must take the forms

Uc = (qg)1/3, Dc =

(
q2

g

)1/3

. (3.13b, c)

Introducing (3.12a–f ) into (3.1)–(3.3) and (3.4b) and reducing, the following dimen-
sionless relations are obtained:

u
∂u

∂x
+ v

∂u

∂y
= −∂h

∂x
− ∂η

∂x
−
(
u2 + v2

)1/2
u

h
, (3.14)

u
∂v

∂x
+ v

∂v

∂y
= −∂h

∂y
− ∂η

∂y
−
(
u2 + v2

)1/2
v

h
, (3.15)

∂uh

∂x
+
∂vh

∂y
= 0, (3.16)

∂η

∂t
= −E(u2 + v2). (3.17)

In (3.17) E denotes the dimensionless rate of bed erosion, given by

E(u2 + v2) =

{
(u2 + v2 − ψ)γ if u2 + v2 > ψ

0 if u2 + v2 < ψ,
(3.18)

where ψ denotes the ratio of the critical shear stress for bed erosion to the shear
stress realized at Froude-critical conditions:

ψ =
τ̃th

τ̃c
. (3.19a)
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This parameter, which must always be less than unity, is related to ψn as follows:

ψ = u2
nψn, (3.19b)

where un denotes the dimensionless normal flow velocity far upstream, which from
(3.7c, d ) and (3.9) is found to satisfy the relations

un = σ1/3 = Fr2/3
n . (3.19c)

A corresponding non-dimensionalization of (3.7a, b) and (3.8b, c) yields the up-
stream and boundary conditions

(u, v)→ (un, 0), −∂η
∂x
→ σ as x→ −∞, (3.20a, b)

u2 + v2 = h, η = 0 at x = xc. (3.21a, b)

4. The one-dimensional base state
4.1. Formulation and coordinate transformation

The dimensionless equations of the base state are obtained from (3.14)–(3.17) by
assuming the flow to be solely in the x̃-direction and assuming ṽ to vanish:

u
∂u

∂x
= −∂h

∂x
− ∂η

∂x
− u2

h
, (4.1)

uh = 1, (4.2)

∂η

∂t
= −E(u2). (4.3)

As noted earlier, a solution is sought which describes a profile that retreats at
a constant speed in the x-direction while maintaining an invariant profile. This
solution offers two advantages. First, it describes the downward-concave profile of
figure 3, which is in general agreement with the observation that the ridges between
channels, which can be taken to be relicts of a previous unchannelized state, are
typically observed to be downward concave. Secondly, the solution of permanent
form resulting from the assumption of a constant upstream migration rate describes
an equilibrium that provides a convenient base state for a formal stability analysis. It
is not meant to imply here that channellization always begins from this particular base
state. Rather, it is argued that this base state is a realistic one from which a rigorous
stability analysis can be conducted. The following coordinate transformations are
introduced to this end:

η∗ = η − bt, x∗ = x+ ct, t∗ = t. (4.4a–c)

In (4.4b) c denotes the constant velocity of migration of the profile in the upstream
direction and b is a constant necessitated by the fact that the bed is eroding everywhere
when ψn < 1. Introducing (4.4a–c) into (4.1)–(4.3), dropping the dependence on time t∗
and dropping the stars for simplicity, it is found that (4.1) and (4.2) remain unchanged,
whereas (4.3) reduces to

c
dη

dx
+ b = −E(u2), E(u2) =

{
(u2 − ψ)γ for u2 > ψ

0 for u2 6 ψ.
(4.5a, b)

The following three cases can be distinguished with the aid of (3.19b), (3.19c) and
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t̃ +Dt̃

t̃

c̃SnDt̃
ẼnDt̃

b̃Dt̃
c̃Dt̃

Figure 5. Diagram showing the physical interpretation of b̃.

(4.5b). In the case u2
n > ψ, i.e. ψn < 1, erosion extends infinitely far upstream. In

the case u2
n = ψ, i.e. ψn = 1, the threshold condition for erosion is reached infinitely

far upstream. In the case u2
n < ψ, i.e. ψn > 1, erosion extends only a finite distance

upstream. In this last case it will be found that η converges to a profile with a constant
slope at a finite distance upstream of the Froude-critical point, whereas u converges
to un only at x = −∞. The present analysis encompasses all three cases.

The constant b can be obtained by considering flow far upstream where normal
conditions are maintained, for which case dη/dx→ −σ and E → En, where σ denotes
the normalized upstream slope and En denotes the dimensionless erosion rate under
normal conditions far upstream. With the use of (3.19b) and (3.19c) it is found that

En =

{
(u2
n − ψ)γ for u2

n > ψ

0 for u2
n 6 ψ

=

{
[Fr

4/3
n (1− ψn)]γ for ψn < 1

0 for ψn > 1.
(4.6)

Thus far upstream (4.5a) reduces to

b = cσ − En. (4.7)

Substitution of (4.7) into (4.5a) yields

dη

dx
= −σ − c−1[E(u2)− En]. (4.8)

While the parameter b is easily obtained through the above formal manipulation
of the equations, its physical meaning is best expressed by briefly returning to
dimensioned parameters and considering the normal flow conditions assumed to be
realized far upstream. Let c̃ denote the dimensional version of dimensionless wave
speed c. In time ∆t̃ a Lagrangian point in the bed elevation profile is moved upstream
a distance c̃∆t̃, where it is now a distance c̃Sn∆t̃ below the original bed profile at
time t̃. During this time the bed will have eroded down a distance Ẽn∆t̃. In general,
however the distance Ẽn∆t̃ will not be equal to c̃∆t̃. In order for the Lagrangian
point to be at the correct elevation, the parameter b̃ must be introduced so that the
following condition holds:

Ẽn∆t̃+ b̃∆t̃ = c̃Sn∆t̃, (4.9)

or the dimensionless form (4.7). The relation between the various parameters in (4.9)
is illustrated in figure 5.

Reduction of (4.1) and (4.2) with (4.4) yields the relation

du

dx
=
u5 + u2dη/dx

1− u3
. (4.10)

The upstream and boundary conditions on (4.8) and (4.10) are expressed as follows.
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The downstream boundary x̃c at which Froude-critical flow is realized is assumed
to migrate upstream at the same speed c as the rest of the profile, so that it can
be specified as the point x = 0 in the moving coordinate system without loss of
generality. Thus (3.8b, c) reduce to the respective boundary conditions

u|x=0 = 1, η|x=0 = 0, (4.11a, b)

and (3.7a) reduces to the upstream condition

u|x=−∞ = un. (4.12)

4.2. Solution for the base state

Substituting (4.8) into (4.10) and reducing, it is found that

du

dx
=
u5 − u2{σ + c−1[E(u2)− En]}

1− u3
. (4.13)

Note that the denominator on the right-hand side of the equation vanishes at the
origin x= 0, where Froude-critical conditions are realized. The smooth profile of
figure 3 indicates, however, that there should be no singularity in du/dx at the point
at which Froude-critical flow is realized (e.g. Escoffier 1958; Chow 1959). With this in
mind, the numerator must vanish as well at the origin, thus specifying the migration
speed c:

c =
Eo − En
1− σ , (4.14a)

where

Eo = E|x=0 = (1− ψ)γ. (4.14b)

Expressing c purely in terms of the parameters Frn and ψ, it is found from (3.19c),
(4.6) and (4.14) that

c =


(1− ψ)γ − (Fr

4/3
n − ψ)γ

1− Fr2
n

for Fr
4/3
n − ψ > 0

(1− ψ)γ

1− Fr2
n

for Fr
4/3
n − ψ 6 0.

(4.15)

Starting from (4.7), a similar reduction for b yields the form

b =


Fr2

n

(1− ψ)γ − (Fr
4/3
n − ψ)γ

1− Fr2
n

− (Fr4/3
n − ψ)γ for Fr

4/3
n − ψ > 0

Fr2
n

(1− ψ)γ

1− Fr2
n

for Fr
4/3
n − ψ 6 0.

(4.16)

Substituting (4.14a) into (4.13) and reducing, it is found that

du

dx
=
u5 − u2

{
σ + (1− σ)[E(u2)− En]/[Eo − En]}

1− u3
. (4.17)

It is readily seen from (3.19c) and (4.17) that du/dx→ 0 as u→ un, indicating that the
upstream condition (4.12) is satisfied perforce. The form of du/dx remains, however,
indeterminate at x = 0. An application of L’Hopital’s rule yields the result

ux0 ≡ du

dx

∣∣∣∣
x=0

= 1− 1
3
(1− σ)

2γ(1− ψ)γ−1

(1− ψ)γ − En . (4.18)

The parameter ux0 must be positive in order to yield the physically realistic condition
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Figure 6. Regime diagram showing the range of values of Frn and ψ for which erosion extends
infinitely far upstream, and the range for which it does not.

of flow that is accelerating in the downstream direction at the Froude-critical point. In
the case for which En > 0, corresponding to erosion extending infinitely far upstream,
the exponent γ must generally be in excess of a value between 1 and 1.5 in order
for this condition to hold. When En = 0, corresponding to erosion extending a finite
distance upstream, ux0 is generally positive even for values of γ below unity.

Equation (4.17) can now be solved with the aid of (4.11a) and (4.18) upon specifi-
cation of three parameters: the exponent γ in the erosion relation, the normal Froude
number Frn attained far upstream (or alternatively the normalized upstream slope
σ) and the ratio ψ of critical shear stress for bed erosion to the shear stress at
Froude-critical conditions. The integration proceeds upstream from x = 0. Once the
solution for u is known, the elevation profile η(x) can be obtained by integrating (4.8)
subject to (4.11b).

4.3. Evaluation of the base state

The borderline between the regime for which erosion extends infinitely far upstream
(En > 0) and the regime for which it does not is given by the condition ψn = 1, or
equivalently by the highest value of Frn for which En = 0,

Fr4/3
n = ψ. (4.19)

The two regimes are shown in figure 6. Note that the borderline between them, which
denotes the condition at which the threshold shear stress for bed erosion is just barely
attained at x = −∞, is independent of the exponent γ.

In figures 7 and 8 the variation of the parameters c and b as functions of Frn and
ψ are shown for the cases γ = 1.5 and 2.0. In general larger values of Frn and smaller
values of ψ are seen to favour larger values of the upstream wave speed c. Recall,
however, that neither of these two parameters can exceed unity and yield physically
realistic solutions.

Example profiles for bed elevation η and flow velocity are shown for two base-state
solutions in figure 9. In the first of these, for which erosion does not extend infinitely
far upstream, γ = 1.5, σ = 0.1 (Frn = 0.316) and ψ = 0.3. In the second, for which
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Figure 10. Plot of u and η versus x for γ = 1.5, σ = 0 and ψ = 0.1. Note that bed slope converges
to zero a finite distance upstream, but u converges to zero only as x→∞.

erosion extends infinitely far upstream, γ = 1.5, σ = 0.25 (Frn = 0.5) and ψ = 0.3.
It should be recalled that the parameters used in the non-dimensionalization for
bed elevation versus distance are inherently greatly distorted, with elevation made
dimensionless with the scale Dc and streamwise distance made dimensionless with the
scale Dc/Cf .

It is of some interest to note that the analysis for the base state is well behaved
even in the limit as σ → 0 (in which case Frn → 0 as well). In this case the bed slope
converges to zero a finite distance upstream of x = 0, but flow velocity u converges
to zero only as −x → ∞. A sample calculation is shown for the case γ = 1.5, σ = 0
(Frn = 0) and ψ = 0.1 in figure 10.

5. Perturbation and linear stability analysis
5.1. Linearization

Having specified the base state, it is now possible to proceed to the linear stability
analysis for incipient channellization. In the analysis that follows the subscript 0 is
used to denote the base state, so that u0 and η0 denote flow velocity and bed elevation
of the base state. The dimensionless formulation of the previous section is retained
here.

A laterally undulating perturbation is now added to the base state in accordance
with the description of figure 4. Since the perturbation is imbedded in a landscape
that is moving upstream at speed c, the problem can be formulated directly in terms
of the moving coordinate system. The perturbation can be conceptualized as incipient
gullies originating from the Froude-critical point, where the bed elevation now takes
the initial form

η = a cos ky at t = 0, x = 0. (5.1)

Here a is perturbation amplitude at t = 0, which is taken to be arbitrarily small. The
question of interest here is whether or not such an initial perturbation reinforces itself,
thus causing amplitude to grow and the channellization of figure 4 to commence, or
the perturbation dies, restoring the base sheet flow.

Equations (3.14)–(3.16) remain unchanged in the dimensionless moving coordinate
system; (3.17) now reduces with the aid of (4.4) and (4.7) to the form

∂η

∂t
+ c

∂η

∂y
+ cσ + E(u2 + v2)− E(σ2/3) = 0, (5.2)

where E(σ2/3) is identical with the parameter En. The following forms are now
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introduced to describe the perturbations in u, v, h and η to O(a):

u = u0 + au1 + · · · , v = av1 + · · · , (5.3a, b)

h = h0 + ah1 + · · · , η = η0 + aη1 + · · · . (5.3c, d )

Note that in the above relations, the O(1) parameters of the base state are functions
of x only, whereas the O(a) perturbations are functions of x, y and t. Substituting
these relations into (3.14)–(3.16) and (5.2) and expanding, the following results are
obtained.

At O(1) in a the formulation of the base state is precisely recovered, as expected:

u0

du0

dx
= −dh0

dx
− dη0

dx
− u2

0

h0

, (5.4)

u0h0 = 1, (5.5)

c
dη0

dx
+ cσ + E(u2

0)− E(σ2/3) = 0. (5.6)

At O(a) in a the following forms are obtained:

u0

∂u1

∂x
+ u′0u1 = −∂h1

∂x
− ∂η1

∂x
− 2u2

0u1 + u4
0h1, (5.7)

u0

∂v1

∂x
= −∂h1

∂y
− ∂η1

∂y
− u2

0v1, (5.8)

h0

∂u1

∂x
+ h′0u1 + u0

∂h1

∂x
+ u′0h1 + h0

∂v1

∂y
= 0, (5.9)

∂η1

∂t
+ c

∂η1

∂x
+ Eu(u

2
0)u1 = 0. (5.10)

In the above relations the prime denotes the ordinary derivative of a base-state
variable with respect to x, and the subscript u denotes a derivative with respect to u.
Thus the parameter Eu(u

2
0) is given by

Eu(u
2
0) =

{
2γ(u2

0 − ψ)γ−1u0 if u2
0 > ψ

0 if u2
0 < ψ.

(5.11)

Note that in (5.11), when γ < 1 the parameter Eu attains an infinite value wherever
u2

0 = ψ. This implies that the domain to the left of the dividing line in figure 6 cannot
be realistically described for the case γ < 1. Here the analysis is restricted to the
range γ > 1, and to values of γ within this range which yield positive values of ux0

from (4.18).
Separable solutions to (5.7)–(5.10) are represented as follows:

u1 = u∗1(x) eωt cos ky, v1 = v∗1(x) eωt sin ky, (5.12a, b)

h1 = h∗1(x) eωt cos ky, η1 = η∗1(x) eωt cos ky, (5.12c, d )

where ω denotes the time growth rate of the amplitude of the initial perturbation.
Note that the base state is unstable, and incipient channellization amplifies itself
when ω > 0. Substituting (5.12) into (5.7)–(5.10) and reducing, the following ordinary
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differential equations are obtained for the starred quantities in (5.12):

du∗1
dx

=
(u2

0 + u−1
0 )u′0 + 2u4

0 − c−1Eu(u
2
0)u

2
0

1− u3
0

u∗1 − k

1− u3
0

v∗1

− u0u
′
0 + u6

0

1− u3
0

h∗1 − c−1ωu2
0

1− u3
0

η∗1 , (5.13)

dv∗1
dx

= −u0v
∗
1 +

k

u0

h∗1 +
k

u0

η∗1 , (5.14)

dh∗1
dx

= −2u′0 + 2u2
0 − c−1Eu(u

2
0)

1− u3
0

u∗1 +
ku0

1− u3
0

v∗1

+
u4

0 + u2
0u
′
0

1− u3
0

h∗1 +
c−1ω

1− u3
0

η∗1 , (5.15)

dη∗1
dx

= −c−1Eu(u
2
0)u
∗
1 − c−1ωη∗1 . (5.16)

5.2. Boundary conditions

Here it is assumed that far upstream the perturbations die out, so that the base
solution is realized as x→ −∞. (In point of fact only two conditions can be realized
far upstream: either the perturbations die out or they become infinitely large. The
latter case is excluded here on physical grounds.) Thus the following conditions are
imposed:

u∗1 = 0, v∗1 = 0, h∗1 = 0, η∗1 = 0 as x→ −∞. (5.17a–d )

An examination of the structure of (5.13)–(5.16) reveals, however, that if three of the
above conditions are imposed, with fourth one is satisfied identically. Thus in reality
only three independent boundary conditions are specified by the above relations.

The condition of Froude-critical flow at the downstream boundary of the flow
domain is preserved in the present analysis. The downstream boundary, however, is
no longer precisely at x = 0 in the light of the perturbations. Non-dimensionalizing
(3.8a), the following condition holds:

u2 + v2

h
= 1 at x = aχ cos ky, (5.18)

where the quantity aχ cos ky denotes the perturbed position of the Froude-critical
point consonant with the forms (5.12). Substituting (5.3) and (5.12) into (5.18) and
reducing, at O(1) in a it is found that

u0 = h0 at x = 0. (5.19)

Since by definition u0(0) = h0(0) = 1, the boundary condition is satisfied identically
as part of the base flow solution. The following relation is obtained at O(a) in a:

2u∗1 + 2u′0χ = h∗1 + h′0χ at x = 0. (5.20)

Noting from (5.5) that u′0(0) + h′0(0) = 0, the above relation is quickly reduced to

2u∗1 + 3u′0χ = h∗1 at x = 0. (5.21)

The downstream boundary condition thus becomes the relation by which the unknown
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χ, and thus the effect of the perturbations on the position of the Froude-critical point,
is evaluated.

In the light of the specification (5.1), the parameter η∗1 must be normalized so as to
satisfy the following condition at the origin:

η∗1 = 1 at x = 0. (5.22)

In this way three of the relations (5.17) and (5.22) specify four boundary conditions
on the four unknowns u∗1, v∗1 , h∗1 and η∗1 of (5.13)–(5.16). In point of fact, however,
these equations contain a fifth unknown, namely the perturbation growth rate ω.
Thus one more condition is needed to close the problem. Once this condition has
been specified, the problem can be solved, and the effect of the perturbations on the
Froude-critical point can be evaluated from (5.21).

5.3. Regularity condition

It was noted in the discussion of the base flow solution that at x = 0 the denominator
1− u3 (1− u3

0 in the notation of this section) of (4.17) vanishes. The condition for the
existence of a non-singular solution is that the numerator must vanish as well. The
same problem arises at O(a), as can be seen from an examination of (5.13) and (5.15).
For example, (5.13) may be rewritten as

(1− u3
0)

du∗1
dx

= [(u2
0 + u−1

0 )u′0 + 2u4
0 − c−1Eu(u

2
0)u

2
0]u
∗
1 − kv∗1

− (u0u
′
0 + u6

0)h
∗
1 − c−1ωu2

0η
∗
1 . (5.23)

Note that if du∗1/dx is to be non-singular at the origin, it follows that the right-hand
side of (5.23) must vanish there, yielding with the aid of (5.22) the regularity condition

[Eu(1)− 2c(p+ 1)]u∗1 + kcv∗1 + c(p+ 1)h∗1 + ω = 0 at x = 0, (5.24)

where p = u′0(0) = ux0. The same analysis as applied to (5.15) yields exactly the
same relation, so that (5.24) provided the fifth condition needed to evaluate the five
parameters u∗1, v∗1 , h∗1, η∗1 and ω.

5.4. Method of solution

Equations (5.13)–(5.16) have solutions satisfying the boundary and regularity condi-
tions only for particular values of ω, and thus the equations and conditions define
an eigenvalue problem. With this in mind it is possible to reduce the problem to an
equivalent two-point boundary value problem associated with the points x = 0 and
x = −∞. Insofar as the equations do not obviously admit an analytical solution,
a numerical method is used here. In particular, the equations are solved using the
relaxation method outlined in Press et al. (1992).

6. Results and observations
6.1. Characteristic wavenumber for maximum instability

The instability phenomenon described here is completely characterized by the same
parameters that specify the base flow, i.e. the exponent γ in the erosion relation, the
normalized upstream slope σ (or the normal Froude number of the upstream flow
Frn) and the ratio ψ of the critical shear stress for bed erosion to the shear stress
at the Froude-critical condition, and one additional parameter, i.e. the transverse
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Figure 11. Dependence of ω on ψ and k. (a) σ = 0.1, γ = 1.5; (b) σ = 0, γ = 1.5; (c) σ = 0.5,
γ = 1.5; (d) σ = 0.1, γ = 2.0.

wavenumber k of the perturbations. Thus the growth rate ω takes the following
functional form:

ω = ω(σ, ψ, γ, k). (6.1)

The dependence of ω on these parameters is studied in figures 11 and 12. The
general dependence of ω on k (except within a region near γ = 1.5 and ψ = 0,
as detailed below) can be described as follows. As k becomes small ω approaches
zero. As k increases ω typically increases above zero, reaches a maximum, and then
quickly drops off into the negative range for further increases in k. The values of k for
positive ω are typically less than 10. Thus the following two results are obtained: (a)
a range of wavenumbers for which ω is positive, and thus incipient channellization
reinforces itself, is found for a wide range of conditions; and (b) the plot of ω versus
k commonly possesses a value km associated with maximum ω, implying the selection
of a preferential wavelength at the linear level. To the authors’ knowledge, the present
analysis is the first formal stability analysis to successfully predict wavelength selection
at the linear level.

In figures 11(a)–11(c) the variation of ω in k, σ and ψ is studied for the case
γ = 1.5. In the cases of figures 11(a) (σ = 0.1) and 11(b) (σ = 0) the plot of ω
versus k has a wavenumber km somewhere between 0.3 and 0.9 associated with a
positive maximum growth rate ωm for values of ψ ranging from 0.1 to 0.7. This
wavenumber constitutes the characteristic wavenumber of channellization predicted
by this linear theory. Within the specified range of ψ, km tends to increase somewhat
with increasing ψ.

In the cases described by the above three plots, a characteristic wavenumber ceases
to exist in the limits ψ → 0 and ψ → 1. In the latter case this is because ω becomes
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corresponding to a maximum growth rate ω = 0.426; (b) k = 5.0, yielding a value of ω of −1.25.

negative for all values of k, a result that is perhaps not unexpected in that values
of ψ only slightly less than one restrict any erosion to the immediate vicinity of the
Froude-critical point of the base state. In the latter case, the analysis fails as ψ → 0
in the case γ = 1.5.

This failure is associated with the nature of the base solution in the specific case
γ = 1.5. It can be seen from (4.18) with the aid of (3.19c) and (4.6) that the parameter
ux0 → 0 as ψ → 0 for γ = 1.5, yielding a condition for which no base solution exists.
Such a condition does not prevail for values of γ in excess of 1.5, for which the base
state is well behaved as ψ → 0. This is illustrated in figure 11(d) for the values γ = 2.0
and σ = 0.1. It is seen therein that the highest growth rate is attained for the case
ψ = 0.

It is seen in figure 11(c), for which σ = 0.5 (Frn = 0.707), that no characteristic
wavenumber km exists for sufficiently small values of ψ. In the range for which the
curve of ω versus k possesses a maximum, the instability appears to be suppressed.
This suppression is associated with values of σ (Frn) approaching unity.

In figure 12 the role of varied exponent γ in the erosion relation on the curve ω(k)
is studied for the case σ = 0.1 and ψ = 0.6. It is seen that the variation of the curve in
γ over the range from 1.0 to 2.5 is relatively modest. The characteristic wavenumber
kc increases somewhat with γ, but remains in the range 0.3–0.9.

In figures 13(a) and 13(b) the spatial variation of u0, η0, u
∗
1, v

∗
1 , h∗1 and η∗1 is shown

for the values γ = 1.5, σ = 0.1 and ψ = 0.6. In figure 13(a) k has been set equal to the
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value of 0.5 that yields the maximum growth rate ω of 0.426 for this case. In figure
13(b) k has been increased to 5.0, yielding a value of ω of −1.25, i.e. well into the
range for which the base state is stable. The streamwise discharge per unit width uh
can be expanded with the aid of (5.3), (5.5) and (5.12) to yield the result

uh = 1 + aeωt cos ky(u0h
∗
1 + u−1

0 u∗1). (6.2)

The value of this parameter at the origin is given by

uh|x=0 = 1 + aeωt cos ky(h∗1 + u∗1). (6.3)

It can be seen from the two plots that u∗1, v∗1 and (u∗1 + h∗1) are larger near the origin
in the case of figure 13(b). That is, near the origin larger value of k favours more
gathering of the flow in the troughs of the perturbations. Farther upstream, however,
it is seen that the smaller value of k is more effective in gathering flow into the troughs.
A competition between these two effects, one favouring larger wavenumbers and the
other favouring smaller wavenumbers results in the selection of a wavenumber kc for
maximum gathering of flow in the troughs, corresponding to maximum instability, in
the range 0.4–0.8.

6.2. Spacing between incipient channels

In most cases for which ψ or σ is not close to unity the instability leading to
channellization is manifested only in the range for which k is between about 0.06
and 1, and the characteristic wavelength km is typically between 0.04 and 0.08. The
dimensional characteristic wavelength defining the spacing between incipient channels
λ̃m is related to km according to

λ̃m = 2πDcC
−1
f k−1

m . (6.4)

An appropriate estimate for the resistance coefficient Cf associated with sheet flow is

0.01. With this in mind the spacing λ̃ between channels must be within a range near
600 to 10 000 times the critical depth Dc in order for the channelizing instability to
be manifested. Estimating the characteristic wavenumber km to be near 0.6, it can be
concluded that the spacing between channels predicted by the present linear theory
should be on the order of 1000 times Dc.

Montgomery & Dietrich (1989), Dietrich & Dunne (1993) and Izumi & Parker
(1995a) have noted that the minimum spacing between channels on hillslopes is
typically on the order of 60 to 130 m, so that an overall scaling for minimum channel
spacing is ∼ 100 m. The first two papers discuss field sites to which the present analysis
can be applied. The present analysis requires a critical depth of flow Dc of ∼ 0.1 m
in order to realize the expected spacing (∼ 100 m). In the absence of infiltration, a
rainfall of 360 mm h−1 over a length of 1 km of hillslope can produce a discharge per
unit width q at the downstream end of 0.1 m2 s−1, and thus from (3.13c) a value of Dc
of 0.1 m s−1. While such a rainfall is fairly extreme, it is likely that relatively extreme
events play a controlling role in the process of channellization.

It should be noted, however, that the present theory need not precisely predict the
spacing observed in the field. It is likely that nonlinear effects winnow out the weaker
channels, leading to a gradual increase in channel spacing in time as compared to
the one predicted for incipient channellization. A repeat of the above analysis with a
rainfall rate of 70 mm h−1 results in an incipient spacing of about 34 m, a value that
could easily increase to the order of 100 m under the influence of nonlinear effects.
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Figure 14. Diagram illustrating the introduction of streamwise perturbations to the base state.

6.3. On the stability of the base state to streamwise perturbations

The base state assumed here, i.e. a one-dimensional downward-concave hillslope
profile that migrates upstream at constant rate would appear to be a reasonable
starting point for the study of the inception of channellization. The base state clearly
constitutes a fully nonlinear equilibrium state. If, however, this equilibrium state is
unstable to streamwise perturbations, it might dissipate or devolve into a different
shape before the transverse instability associated with incipient channellization has
a chance to take hold. It is thus of value to consider whether the base state itself
is stable to streamwise perturbations. This is especially the case in the light of the
fact that Parker & Izumi (2000) have shown that under certain circumstances long
profiles subject to erosion can devolve into a series of periodic steps.

With this in mind attention is briefly focused on the one-dimensional analysis
associated with the base state. As shown in figure 14, this base state may be subjected
to an infinitesimal perturbation at the origin such that the following condition is
satisfied:

η = a at t = 0, x = 0. (6.5)

Corresponding to (6.5) are the forms

u = u0(x) + au1(x)eωt, h = h0(x) + ah1(x)eωt, (6.6a, b)

η = η0(x) + aη1(x)eωt, (6.6c)

where ω denotes the growth rate of these streamwise perturbations. Substitution
of (6.6) into (4.1)–(4.3) and reduction would lead to a formal stability analysis. A
consideration, however, of the problem of channellization that has already been solved
leads to the conclusion that the one-dimensional stability analysis already described
can be obtained forthwith in the limit as k → 0. As described earlier, that analysis
predicts values of ω that always vanish for γ > 1.5 in this limit. The stability of
the base state to streamwise perturbations helps justify its use as the starting point
for an analysis of the stability of transverse perturbations associated with incipient
channellization.

7. Discussion
Two issues merit further discussion. The first of these refers to the range of

validity of the present downstream-driven theory of channellization. Since the theory
applies to a base state that attains subcritical flow far upstream, the theory cannot
be used to explain channellization occurring on slopes steep enough to support
supercriticality everywhere. This does not imply that channellization does not occur
under such conditions, but rather that it is driven by a different mechanism. For
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example, upstream-driven theory of channellization due to Izumi & Parker (1995a) is
applicable to such conditions. Although the mechanism of channellization is different,
the spacing between channels predicted by that theory is of the same order of
magnitude as that predicted by the present theory. In addition, there is a certain
consistency in an overall picture according to which channellization is driven from
the upstream end under Froude-supercritical conditions and from the downstream
end (or upstream end) under Froude-subcritical conditions.

The second issue concerns the downstream-driven theory of channellization of Izumi
& Parker (1995b), which is superseded by the present analysis. In that formulation
flow over the free overfall illustrated in figure 2 was considered. It was found in the
analysis that if conditions precisely at the precipice were considered, the incipient
spacing between channels declines to zero. In order to obtain a finite spacing, it
was necessary to consider the incipient pattern of erosion somewhat upstream of the
precipice, where the boundary shear stress first becomes equal to the threshold value
for bed erosion. While the analysis considers the same mechanism the present one,
the assumption of a vertical precipice made it impossible to cast the treatment in the
form of a rigorous stability analysis, and in addition required the introduction of an
element of subjectivity. Vertical precipices in cohesive soil may be briefly created by
tectonic processes, but weathering and soil erosion should quickly smear these out.
The self-preserving downward-concave profile used here defines a far more realistic
base state, and makes possible a formal stability analysis. The key to the successful
analysis is the regularity condition (4.18), which ensures a finite, positive value of the
streamwise rate of change of flow velocity ux0 at the Froude-critical point. In the
case of a free overfall the Froude-critical point is reached as the precipice, where ux0

becomes infinitely large.

8. Conclusions
A formal stability analysis for downstream-driven incipient channellization on

hillslopes is presented. The analysis relies on a base state that consists of a Froude-
subcritical sheet flow over an eroding, downward-concave bed profile migrating
slowly upstream at constant speed. Channellization is driven from the point at the
downstream end of the domain where the flow of the base state obtains the critical
Froude number of unity. The analysis predicts the following.

The base profile is stable to streamwise perturbations. Solutions can be found both
for the case when erosion extends infinitely far upstream of the Froude-critical point,
and when it extends only a finite distance upstream. Far upstream the flow reaches
an equilibrium state with a normal Froude number Frn that must be less than unity.
Solutions can also be found for the limit Frn → 0, in which case the bed slope far
upstream becomes vanishing.

A range of conditions exist for which the base state is unstable to perturbations
in the transverse direction consisting of a series of troughs and ridges aligned down-
stream. The instability is manifested if the following two parameters are sufficiently
smaller than unity: (a) the upstream normal Froude number Frn and (b) the ratio ψ
of critical stress for bed erosion to the boundary shear stress of the base state attained
at the Froude-critical point. Singular behaviour as e.g. Frn → 0 can be avoided as
long as the exponent γ in the erosion relation exceeds 1.5.

The instability describes incipient channellization. It appears for values of dimen-
sionless wavenumber k between roughly 0.06 and 1, and is maximized for a value
km that is typically close to 0.6. Assuming a friction factor Cf of the order of 0.01
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and appropriate rates of runoff corresponding to intense storms, this translates to a
spacing between incipient channels of 30 to 100 m.

It can be expected that nonlinear processes should winnow out the weaker channels,
and result in a spacing that is larger than that prevailing under incipient conditions.

The present analysis cannot explain channellization on slopes so steep that Froude-
supercritical flow is maintained over a substantial distance. The upstream-driven
analysis of Izumi & Parker (1995a), however, applies to this case. It predicts a spacing
between channels that is of the same order of magnitude as that predicted here.

The contribution of the second author to this work was supported by the US
National Science Foundation (grant no. CTS-9424507).
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